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Abstract
The insertion of magnetic impurities in a conventional superconductor leads to various effects.
In this work we show that the electron density is affected by the spins (considered as classical)
both locally and globally. The charge accumulation is solved self-consistently. This affects the
transport properties along magnetic domain walls. Also, we show that superconductivity is
more robust if the spin locations are not random but correlated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetic impurities in conventional superconductors have
been studied for a long time [1]. Their effect is expressed
through a spin coupling to the spin density of the conduction
electrons. If the coupling is weak, the impurities may
be considered as classical spins. In general, we should
consider the Kondo effect due to the internal dynamics of the
impurity spins. This is a difficult problem and the results
are qualitatively the same as for classical spins (particularly
if the coupling is antiferromagnetic [2]) which in this case
is equivalent to the effect of local magnetic fields coupled
to the electrons. Ni impurities induce 2Ni bound states due
to the capture of electrons by the impurities. The addition
of extra sub-gap states has been studied using scanning
tunneling spectroscopy [3, 4]. As the coupling increases,
various level crossings take place where the spin content is
changed [5–8], inducing first order quantum phase transitions.
Qualitatively the same happens in the case of Kondo impurities
if the coupling is antiferromagnetic, where a quantum phase
transition also occurs. The case of a Kondo ferromagnetic
coupling is different since the bound states stay close to the
band gap edge and no transition occurs. We will consider
here the classical case valid if either the spin of the impurity,
S, is large (with J S small) or if the Kondo temperature is
small TK � �. These phase transitions may be identified in

various ways (see [1] and references therein) such as changes in
the total magnetization of the electron spin density, local spin
density, local order parameter, local density of states [7, 6, 8],
or through various quantum information measures such as
entanglement and mutual information [9] or partial state
fidelity [10].

For instance, in the case of a single impurity, as the
coupling varies, the total magnetization changes from a zero
average value at low coupling to a value of 1/2 at couplings
larger than a critical value. Also, there is a π shift in the order
parameter at the impurity site. Since the impurity spin acts as a
local magnetic field, the electron spin density will align along
the local spin. At the impurity site it is positive, as expected.
For small values of the coupling there is a negative spin density
around the impurity site. The many-body system screens the
effect of the impurity, inducing fluctuations that compensate
the effect of the local field in such a way that the overall
magnetization vanishes. For larger couplings the spin density
in the vicinity of the impurity site is positive. For a strong
enough coupling, the many-body system becomes magnetized
in a discontinuous fashion. One interpretation is that, if J is
strong enough, the impurity breaks a Cooper pair and captures
one of the electrons, leaving the other electron unpaired, and
thus the overall electronic system becomes polarized.

In this work we consider the effect of the impurities on
the electron density, both overall and local densities. At half-
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filling, the density is not affected by the impurity spins [7].
We find here that at general fillings the density is changed by
the impurity spins. Considering the case of a single impurity,
its effect on the average density (global density) is very small.
However, the local density is changed in the vicinity of the
impurity. If we have a larger number of impurities present, the
average density is significantly affected in a way that reveals
interference effects, since it is not simply cumulative. In
general, as the coupling grows the density increases. At a
fixed chemical potential (open system) the impurities capture
electrons that are added to the system from the reservoir to
preserve a maximal number of Cooper pairs.

We note that a change of the local electron density also
occurs in the vicinity of a vortex in a superconductor [11].
Due to the circulating currents around the vortex line, an
electrostatic potential is needed to compensate the centrifugal
force due to the circular motion [12]. It has been claimed
that the charge of the vortex has been measured using NMR
in high temperature superconductors [13]. Usually a universal
charge depletion is predicted at the vortex cores. Taking into
account the competition in the d-wave case with other order
parameters, it has been determined that in some circumstances
the vortices may be negatively charged (charge accumulation
with respect to the bulk value) [14, 15]. When two vortices
are close together, strong fluctuations appear in the shared
region of the vortices, inducing a smaller charge accumulation.
Also, the addition of impurities changes the charge profiles. A
small to moderate attractive potential also changes the sign of
the vortex charge, since it locally renormalizes the chemical
potential in a straightforward way [16].

We should recall that, as the number of impurities
grows, superconductivity is destroyed. The case of random
impurities was solved long ago [17, 18], where it was
shown that the critical temperature decreases linearly at small
concentrations and vanishes for relatively small values of the
impurity concentration, as also found experimentally [19].
However, we find that if the spin impurity locations are
correlated, superconductivity is more robust and extends to
higher concentrations.

The paper is organized as follows. In section 2 we present
the model and main equations. Section 3 contains the results
for the electron density profile. In section 4 we consider
self-consistently the effect of electron–electron interaction,
taking into account the Hubbard onsite interaction as well
as electron correlations at different sites. The problem of
the critical concentration of correlated magnetic impurities in
superconductors is discussed in section 5. In section 6 we
consider a simplified one-dimensional model through which
a current is applied and we study the I –V characteristics in
the presence of a magnetic domain wall. The conclusions are
presented in section 7.

2. Model

In this work we are interested in a situation where the classical
spin distribution may be dense (see [8] and references therein).
At either few or basically at all sites of the two-dimensional
system (plane x–z) we place classical spins parametrized like

�Sl
S = cos ϕl �ex + sinϕl �ez , where S is the modulus of the
spin. Thus, we assume that the spins lie in the x–z plane so
that the orbital effect is absent (no superconducting vortices).
We are interested here in superconducting films and consider
that superconductivity is stabilized by some small interplane
coupling. The Hamiltonian of the system is given by

H = −
∑

〈i, j〉,σ
ti, j c

†
iσ c jσ − μ

∑

iσ

c†
iσ ciσ

+
∑

i

(�i c
†
i↑c†

i↓ +�∗
i ci↓ci↑)

−
∑

i,l,σ,σ ′
Ji,l [cosϕlc

†
iσ σ

x
σ,σ ′ ciσ ′ + sinϕlc

†
iσ σ

z
σ,σ ′ ciσ ′ ], (1)

where the first term describes the hopping of electrons between
different sites on the lattice, μ is the chemical potential, the
third term corresponds to the superconducting s-pairing with
the site-dependent order parameter �i , and the last term is the
exchange interaction of the spin density of the electrons with
the magnetic impurities. The sign of interaction is irrelevant
in this case [1]. The hopping matrix is given by ti, j = tδ j,i+δ ,
where δ is a vector to a nearest-neighbor site, and we will take
units such that t = 1. Note that both the indices l and i, j
specify sites on a two-dimensional system (here identified as
the x–z plane). The indices i, j = 1, . . . , N , where N is the
number of lattice sites. We take Ji,l = Jδi,l and therefore
the last sum is over the sites, l, where a spin is located. We
assume that the spin configuration is fixed and static. Defining
the vector

ψn(i) =
⎛

⎜⎝

un(i,↑)
vn(i,↓)
un(i,↓)
vn(i,↑)

⎞

⎟⎠ (2)

the Bogoliubov–de Gennes (BdG) equations can be written as
Hψn = εnψn , where the matrix H at site i is given by

H =
(

A↑ C↑,↓
C↓,↑ A↓

)
, (3)

where

A↑,↓ =
( −h − μ∓ Ji,l sinϕl �i

�∗
i h + μ∓ Ji,l sinϕl

)
(4)

and C = C↑,↓ = C↓,↑ is given by

C =
( −Ji,l cos ϕl 0

0 −Ji,l cos ϕl

)
, (5)

where h = t ŝδ with ŝδ f (i) = f (i + δ). A sum over nearest
neighbors, δ, is implicit. The solution of these equations gives
both the energy eigenvalues and eigenstates. The problem
involves the diagonalization of a (4N) × (4N) matrix. The
solution of the BdG equations is performed self-consistently,
imposing at each iteration that �i = g

2 [〈ci↑ci↓〉 − 〈ci↓ci↑〉],
where g > 0 is the effective attractive interaction between the
electrons. We take g = 2 and the chemical potential μ = −1.
In most cases we take a lattice of size 15 × 15. Changing
the lattice size does not qualitatively change the results, as
discussed previously [8].
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Figure 1. Local density around a single impurity as a function of J .

Figure 2. Local density for a domain wall (DW) as a function of J . The domain wall is of the Néel type and is composed of a line of spins in
the center of the system (xc) with ϕl = π

2 + π

2 tanh x−xc
λ

. We take λ = 3 in lattice units.

3. Electron density

The particle density is calculated using

ni,σ = 〈c†
i,σ ci,σ 〉 =

∑

n

( fn|un(i, σ )|2 + (1 − fn)|vn(i, σ )|2),
(6)

where fn is the Fermi function for the energy εn . We begin by
considering the cases of a single impurity located at the center
of the two-dimensional system and a one-dimensional domain
wall of spin orientations along the center line of the system. In
figures 1 and 2 we show the electron density profiles resulting
from the presence of one or various impurities, respectively.
The effect is particularly noticeable for larger couplings. In
this case the number of electrons captured by the impurities
(and injected in the system to preserve the chemical potential)
is large. This number grows with the number of impurities, as
expected. We note that something similar occurs even if there
is no superconducting order. While in the superconducting
case the magnetization has a discontinuous change at the
critical point, in the case of the normal system (g = 0) the
magnetization increases but it is a crossover. Increasing the
system size does not alter the crossover of the normal case.
The location of the crossover point (or critical point in the
superconducting case) changes slightly with the system size,
but the width of the crossover region in the normal case actually
increases as the system size increases.

As stated above, it has been argued before [7] that, at
half-filling, the total density is not changed by the impurities.
However for general band-filling, as the various quantum phase

Figure 3. Density evolution as a function of the spin coupling for the
single impurity, one-dimensional domain wall and magnetic vortex.

transitions occur the total band-filling also changes. We show
in figure 3 the change of the average density (global density)
as the spin coupling varies. In the case of one impurity, the
increase is very small (and smaller by about one order of
magnitude with respect to the expectation of one electron being
captured by the impurity spin). As the number of impurities
grows, the increase in the band-filling is more noticeable. Here
we consider the Néel domain wall described in figure 2 but
we also consider the case of a much denser distribution of
impurity spins. In particular, we consider a magnetic vortex
where the spin orientations go around the central point of the
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two-dimensional system. In this case there is a spin at every
site except at the central point (which acts like a defect). For
such a dense distribution of spins (concentration close to one)
superconductivity is expected to be destroyed for quite small
values of the spin coupling (for a system size of 15 × 15
superconductivity is destroyed for a spin coupling between
J = 0.5 and 1). Therefore most of the increase of the
band-filling in the case of the magnetic vortex occurs in the
normal phase. Note, however, that for values of J between
J = 0.5 and 1 there is a decrease in the electron density.
For larger coupling values the density increases significantly
and saturates to the half-filling situation (note that these results
were obtained by fixing the chemical potential at μ = −1).
We stress however that both in the single impurity case and in
the one-dimensional domain wall case, the system remains a
superconductor. In the magnetic vortex case there is a vacancy
at the center of the system (absence of impurity spin). As
shown before [20], if the coupling is strong enough, a localized
superconducting region (shown to be a localized mode) appears
at the vacancy site (and in similar situations [20]). As a
consequence there is a sharp decrease of the electron density at
the vacancy site and therefore a decrease in the global density
at small values of J . This result is dual to the density increase
due to the presence of the strong coupling spins.

4. Self-consistent solution of charge accumulation

Since the impurity spins change, locally and globally, the
electron density, the charge accumulation may counteract the
effect of the buildup of charge around the impurities. The same
problem has been addressed before for ferromagnetic metals
with a domain wall, where charging effects are also predicted
to occur [21]. To simplify, we consider here the case of a
single impurity inserted at the center of the superconductor.
The results may be generalized to the case of a domain
wall. We will see that the effect remains with renormalized
amplitudes and stronger Friedel like oscillations. Something
similar occurs in the case of the vortex charge [22].

We have to include two extra terms in the Hamiltonian,
one with respect to the Hartree contribution to the normal
self-energy due to the effective attractive interaction (usually
neglected since it only renormalizes the chemical potential
locally) and a term that is the renormalized repulsive Coulomb
term due to the charge accumulation. The mean-field
Hamiltonian is changed by adding

−
∑

i

(g〈c†
i,↓ci,↓〉c†

i,↑ci,↑ + g〈c†
i,↓ci,↓〉c†

i,↑ci,↑) (7)

and ∑

i


i(c
†
i,↑ci,↑ + c†

i,↓ci,↓), (8)

where


i = gc

∑

j �=i

e−λc|�ri −�r j |

|�ri − �r j | (〈(c
†
j,↑c j,↑ + c†

j,↓c j,↓)〉 − n). (9)

Here λc is a screening length valid in the low momentum
limit, such as in the Thomas–Fermi approximation, gc is the

Coulomb coupling and n is the average density. The longer
range Friedel like contribution is obtained through the self-
consistent solution of the effect of these two extra terms. The
BdG equations are changed adding the diagonal terms

Ã↑,↓ =
(

i − g〈c†

i;↓,↑ci;↓,↑〉 0

0 −
i + g〈c†
i;↑,↓ci;↑,↓〉

)
.

(10)
Due to the renormalization of the chemical potential by the
Hartree term and the Coulomb repulsion, we choose in this
section a chemical potential μ = −1.5. Also, we will consider
a larger system to decrease the effect of the finite size, and we
have chosen λc = 2, leading to a relatively short range e–e
interaction as in a real metallic system.

We have calculated various quantities such as �, n, 
i

and the local chemical potentials renormalized by the Hartree
interaction for both spin orientations μ+ = μ↑ = μ +
g〈c†

i;↑ci;↑〉 and μ− = μ↓ = μ + g〈c†
i;↓ci;↓〉. Here we

considered a larger system size (25 × 25) to minimize finite
size effects near the border of the system.

We consider two values of the coupling J , one below the
quantum phase transition and the other above the quantum
phase transition. Even though the various quantities are
renormalized with respect to the case where the two charge
terms are not considered, the quantum phase transition prevails
as the total magnetization still has a discontinuous change from
zero to 1/2 and the order parameter has a π shift. The overall
behavior is the same, but we can see in figure 4 that there are
stronger oscillations that extend to larger distances. In the case
of gc = 2 the oscillations are quite strong. For these parameters
J = 1 is smaller than the critical value and J = 4 is above
the quantum phase transition (evidenced for instance by the π
shift at the impurity location). In figure 4 we present the local
density for the same set of parameters.

The self-consistent solution of the local ‘Coulomb’
potential is shown for a typical case in figure 5 together with
the local chemical potentials for up and down spins.

5. Critical concentration

Increasing the number of spins one expects that for
very moderate spin couplings superconductivity should
be destroyed. However, some unexpected results were
obtained in [20]. Besides the interesting reappearance of
superconducting order at large couplings due to vacancies
of some kind, either by removing spins or due to singular
points at domain walls or magnetic vortices [20], it was also
found that in some cases the magnetic impurities may induce
superconducting correlations in systems where the effective
pairing interaction is repulsive [20], even though the systems
are dense. It is therefore interesting to revisit the suppression
of superconductivity as the impurity concentration increases.

This was studied long ago for the case when the impurity
distribution and orientations are random [17, 19]. At relatively
small concentration values, superconductivity is depressed.
Refining the theory to take into account the Kondo effect [18]
the same is observed qualitatively and quantitatively in most
concentration regimes. Close to the critical concentration
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Figure 4. Electron density n around a single impurity for J = 1, 4 and gc = 1, 2 for a 25 × 25 lattice.

Figure 5. Parameters
, μ+ and μ− around a single impurity for J = 1 and gc = 2 for a 25 × 25 lattice.

(where the critical temperature goes to zero) some reentrant
superconductivity was obtained but, except near the critical
concentration, the results are quite similar, providing further
evidence that a reasonable description of these systems is
obtained by considering the spins as classical.

In this work we have first considered the case of random
impurities as a function of concentration. As shown in
figure 6(a), the averaged value of the zero temperature
order parameter (which is related to the critical temperature)
decreases linearly from the clean limit with a slope that
increases considerably as the coupling increases. For a
very weak coupling, even though the system is rather dense,
superconductivity prevails. However, a small increase of the
coupling leads to a strong depression of the order parameter.
We see that at half-filling μ = 0 superconductivity prevails for
concentrations up to 0.4. However, if we decrease the band-
filling by lowering the chemical potential to μ = −1, the drop
in the order parameter is much faster, and concentrations of
the order of 0.1 are enough to destroy superconductivity. Note
that these results are obtained for systems of size 15 × 15 and
an average using about 100 configurations is performed. We
expect some finite size effects but this system size is illustrative
of the effects.

We have also considered a regular distribution of the spins
to see their effect on the order parameter. As an extreme case
we have considered a set of spins distributed regularly in a
superlattice commensurate with the space lattice of the electron
sites and with their directions parallel, in a ferromagnetic
like arrangement. As shown in the left panel of figure 6(b)
superconductivity is much more robust in this case. We have
considered the case of a chemical potential μ = 0. It is
clear that even for a concentration of 0.5 (obtained by placing
one spin at every site along one direction and every other site
along the other direction) superconducting order prevails. Only

when the concentration is close to 1 does the order parameter
vanish (we have not considered concentrations between 0.5 and
1 due to requirement of commensurability). These results show
that superconductivity is much more robust if the magnetic
impurities are correlated. In the right panel of figure 6(b)
we considered a regular distribution of the impurity spins
but with random orientations. The results also show that
superconductivity is more robust, showing that the correlated
spatial disorder is the dominant effect.

We note that similar results have been obtained in
the context of Anderson localization in disordered one-
dimensional systems, where correlated disorder may lead to
a metallic state [23, 24].

6. Transport along a one-dimensional domain wall

The charge accumulation along the domain walls affects
the transport properties. In this section we consider the
effect of the impurity spins on a current flowing through the
superconductor. To simplify, we consider here transport along
a one-dimensional wire on which we place the impurity spins.

The Bogoliubov–de Gennes (BdG) equations determine
both the equilibrium states and the scattering states when a
current is passing through. We use a lattice formulation and
define a spinor field at each location in the wire asψi = (u(i,↑
), v(i,↓), u(i,↓), v(i,↑))T . We use a transfer matrix, Mi , to
relate the wave functions in neighboring sites i and i+1 as [25]:

(
ψi+1

ψi

)
= Mi

(
ψi

ψi−1

)
, (11)

with

Mi =
(

T −1(ε − Hi) −I
I 0

)
, (12)

5
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Figure 6. (a) Influence of impurity concentration on the order
parameter for random locations and random orientations (upper
panels) and (b) for a regular spatial distribution and fixed direction of
the impurity spins (left panel) and random orientation (right panel).
The lines are just guides to the eye.

where

T −1(ε − Hi) =
(

A−
i Bi

Bi A+
i

)
(13)

and

A±
i =

( −ε̃i ±bi −ε
t

�i
t

−�∗
i

t
−ε̃i ∓bi +ε

t

)
. (14)

Bi = −σz(J x
i )/t , where σz denotes the Pauli matrix. The

energy of the incident particle is given by ε, t is the hopping
between neighbors, ε̃i = −Ui + μ and bi = J z

i . The
BdG equations are solved self-consistently, in a structure of
length N of two normal leads and a superconducting region
in the middle, to find the profile of the gap function inside
the superconductor, �i , which is then used as input in the
transfer matrix (the proximity effect is thus taken into account).
Here Ui is the barrier strength at the interfaces (U = 0
is a transparent interface and U → ∞ is the tunneling
regime [26]), the chemical potential we set at μ = 0 and
we take t = 1, as above. J x

i , J z
i are the x, z components of

the local field due to the magnetic moments with magnitude
J . We will only consider here the case of a transparent
interface to isolate the effect of the spins. The superconducting
region extends from site NSL to NSR and includes the magnetic

Figure 7. Order parameter and correlation function 〈cc〉 profiles for
a domain wall with J = 0.1.

moments that constitute the domain wall. We take N =
160, NSL = 30, NSR = 130. Let NL (NR) label a site in the left
(right) lead, sufficiently far from the superconductor to neglect
any proximity effects.

In figure 7 we show the order parameter profile along
the leads and the superconducting wire together with the
correlation function 〈cc〉 (g = 2 in the wire and g = 0 in
the leads and J = 0.1). The coherence length is estimated to
be ξ ∼ 15, in lattice units.

To illustrate the procedure of the calculation of the
transport properties [25], consider the scattering state for a
particle with spin up incident from the left. We write

ψNL = (1 + rz, rA, r̄ , r
z
A)

T, (15)

ψNR = (tz, tA, t̄, t z
A)

T, (16)

and

ψNL−1 = (e−iql
1a + rze

iql
1a, rAe−iql

2a, r̄eiql
3a, r z

Ae−iql
4a)T,

ψNR+1 = (tze
iqr

1 a, tAe−iqr
2 a, t̄eiqr

3 a, t z
Ae−iqr

4 a)T.
(17)

This takes into account reflection of the particle with the
same (opposite) spins rz (r̄ ), and reflection as hole due to
Andreev process with the opposite (same) spin rA (r z

A). The
transmission amplitudes tz, ta, t̄, t z

A have the same meanings.
The momenta are obtained far from the superconducting region
where the solution of the BdG equations is easily obtained.
Using the product of transfer matrices to relate the points
NL and NR, one can solve for the various reflection and
transmission amplitudes. An identical procedure is carried out
for a particle with spin down and for incident holes from the
right. For an incident spin up particle the charge current is
given by jL(↑) = sin ql

1a − |rz |2 sin ql
1a + |rA|2 sin ql

2a −
|r̄ |2 sin ql

3a + |r z
A|2 sin ql

4a on the left side (the sine functions
are the velocities). The current on the right is given by jR(↑)
= |tz|2 sin qr

1a −|tA|2 sin qr
2a +|t̄|2 sin qr

3a −|t z
A|2 sin qr

4a. The
differential conductance is given by the currents divided by the
velocity of the incident particle.

In experiments, a potential difference, V , is imposed
between the two sides of the heterostructure in a standard

6



J. Phys.: Condens. Matter 22 (2010) 025701 P D Sacramento et al

Figure 8. I–V characteristics for a single impurity, g = 0 is the case
of a normal metal.

way [27, 28]. Taking into account the contributions from
particles incident from the left and holes incident from the
right, one gets the expression for the current on the left side

I e
σ + I h

σ = e

h

∫ ∞

0
dε

[
f

(
E − eV

2

)
− f

(
E + eV

2

)]

× [1 − Ree + Rhe − T eh′ + T hh′ ], (18)

where Ree is the reflection coefficient of an electron as an
electron, Rhe the reflection of an electron as a hole, T eh′

the
transmission of a hole from the right into an electron on the
left and T hh′

transmission of a hole from the right into a
hole on the left. These coefficients are given by products of
reflection or transmission coefficients (absolute value squared)
times relative velocities to the incident particle.

In figure 8 we show results for the current as a function
of the bias potential, V , for various cases. We compare the
cases of a clean superconductor and a normal metal and study
the difference due to the presence of a magnetic impurity in the
center of the superconductor, as a function of the spin coupling,
J . Due to the Andreev reflection at the interface between
the lead and the superconductor the differential conductance
is larger by about a factor of 2 for energies below the
superconducting gap. Therefore, the current at small voltages
is considerably larger in the superconductor in comparison to
the case of the normal metal (g = 0). Inserting a magnetic
impurity, the current in general decreases due to the scattering
effect. Note, however, that the decrease is much stronger in
the normal case. Also, for voltages smaller than the gap (here
about 0.4) the impurity effect is not noticeable in the case of
the superconductor.

Increasing the number of magnetic impurities their effect
is stronger. Consider first the extreme case where at each lattice
site we place a magnetic moment and consider, for instance,
that the spins are oriented as in the Néel domain wall of
figure 2. In this case the spin concentration is 1, and therefore
a small spin coupling is enough to destroy superconductivity,
as we have seen in section 5. For a spin coupling J = 0.1

Figure 9. I–V characteristics for a dense domain wall. In the left
panel we consider λ = 10.

Figure 10. I–V characteristics for a domain wall with 1/3 density.
(‘r’ stands for random). In the left panel the dashed lines are for the
normal system (g = 0) for the same J values. The ordering is the
same: for larger values of J the current decreases.

superconductivity prevails, but for J = 0.5 it is almost
destroyed. Then the superconductor and the normal metal have
almost the same current characteristics, as shown in the left
panel of figure 9. In the right panel of figure 9 we compare
domain walls with J = 0.1 and different widths, λ = 1, 3, 20.
As expected as the width increases the current decreases.

In order to consider the effect of an increasing spin
coupling in a collection of magnetic moments one needs to
decrease the density of the impurities. In figure 10 we consider
a situation where only one in every three sites is occupied by
a magnetic moment. In the left panel we consider that the
spins are correlated like in a domain wall of width λ = 10
and compare different spin couplings in the superconductor
and a normal metal. For this impurity density a spin coupling
J = 2 destroys superconductivity. For the other couplings we
find results that are qualitatively similar to those for a single
impurity: the current is larger in the superconducting case and
it decreases as J increases. In the middle panel we consider
a small coupling J = 0.1 and compare the cases of a regular
domain wall, impurities placed randomly and regularly spaced
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but with random orientations. Since the coupling is small,
the differences in the current are also small, but the results
show that introducing randomness the current decreases, as
expected. The effect is stronger if the orientations of the
magnetic moments are random. This is considered specifically
in the right panel of the same figure where we compare the case
of the domain wall with the random orientations case, for two
couplings. The case of J = 1 clearly shows that the current
decreases considerably if the orientations are random.

Considering the case of magnetic impurities inserted in a
superconductor, in general these will not be aligned if their
mutual interactions are not strong enough, for instance if the
concentration is not too high. Applying a magnetic field to
orient the magnetic moments will then lead to a significant
increase in the current. The signal is particularly stronger in the
superconductor as compared to a normal metal. Note that, in
contrast, the robustness of the superconducting order is mildly
affected by the orientations of the spins but strongly affected
by the randomness in their locations.

7. Conclusions

We have considered the effect of regular distributions of
magnetic impurities in conventional superconductors. A
reasonable description is obtained taking the impurities as
classical (or local magnetic fields), since the Kondo effect is in
most cases of no importance, particularly for weak couplings.
We should note, however, that we have extended the range of
the spin coupling between magnetic impurities and electron
spin density to rather large values. In this regime it is probably
more appropriate to consider superconducting films under the
influence of external magnetic fields, or systems where the
Kondo temperature is very small. The first case can be
achieved, for instance, using magnetic dots in the vicinity of
the superconducting film with their easy axis oriented parallel
to the surface and with a thickness of the film smaller or of the
order of the penetration length.

The magnetic impurities affect the system in various ways
and, in particular, they change locally and globally the electron
density. In the case of the domain wall considered here, this
implies that the domain wall is charged, as predicted previously
in the context of ferromagnetic metals with magnetic domain
walls [21]. If the domain walls have a quasi-one-dimensional
nature this will lead to lines of preferred charge accumulation
which may be of relevance in the context of transport
properties.

One can imagine the establishment of quasi-one-
dimensional charged lines (impurity domain walls) in a two-
dimensional background that may be switched on and off by
the change of the local magnetic fields (or magnetizations of
the quantum dots). For instance, the domain walls (which
may be just a collection of parallel oriented fields) may be
‘switched’ on by the application of an external magnetic field,
changing in this way the transport properties (one can also
imagine various of these one-dimensional structures assembled
in a circuit like manner). We have shown here that aligning the
spins noticeably increases the current. At the very least we

may consider quasi-one-dimensional organic superconductors
and expect changes in the transport properties.

We have also revisited the problem of the suppression of
superconductivity due to the possible increase of the impurity
concentration. Usually, small concentrations are enough to
destroy superconductivity in the traditional case of random
impurities placed inside the superconductor. We have found
here that superconductivity is much more robust if the impurity
spins are correlated and placed in regular ways. In particular,
one-dimensional structures in the two-dimensional system
lead to small enough concentrations that in the framework
of the model used here does not lead to the destruction of
superconductivity.
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